The Buran spacecraft (Russian: Бура́н, IPA: [bʊˈran], Snowstorm or Blizzard), GRAU index 11F35 K1 was a Soviet orbital vehicle analogous in function and design to the US Space Shuttle and developed by Chief Designer Gleb Lozino-Lozinskiy of RKK Energia. Buran completed one unmanned spaceflight in 1988 and remains the only Soviet space shuttle which was launched into space, as the Buran programme was cancelled in 1993 following the dissolution of the USSR. It was treated as a Soviet space shuttle but only the plane itself was theoretically reusable (and in fact, was never reused). The main part of the system was an expendable powerful rocket - Energia. The flown Buran spacecraft was destroyed in 2002 at the Baikonur Cosmodrome, when the hangar in which it was stored collapsed.

The Buran orbital vehicle program was developed in response to the U.S. Space Shuttle program, which in the 1980s raised considerable concerns among the Soviet military and especially Defense Minister Dmitriy Ustinov. An authoritative chronicler of the Soviet and later Russian space programs, the academic Boris Chertok, recounts how the program came into being. According to Chertok, after the U.S. developed its Space Shuttle program, the Soviet military became suspicious that it could be used for military purposes, due to its enormous payload, several times that of previous U.S. spaceships. The Soviet government asked the TsNIIMash (ЦНИИМАШ, Central Institute of Machine-building, a major player in defense analysis) for an expert opinion. Institute director, Yuri Mozzhorin, recalls that for a long time the institute could not envisage a civilian payload large enough to require a vehicle of that capacity.
Officially, the Buran spacecraft was designed for the delivery to orbit and return to Earth of spacecraft, cosmonauts, and supplies. Both Chertok and Gleb Lozino-Lozinskiy suggest that from the beginning, the program was military in nature; however, the exact military capabilities, or intended capabilities, of the Buran program remain classified. Commenting on the discontinuation of the program in his interview to New Scientist, Russian cosmonaut Oleg Kotov confirms their accounts:
“ We had no civilian tasks for Buran and the military ones were no longer needed. It was originally designed as a military system for weapon delivery, maybe even nuclear weapons. The American shuttle also has military uses.”
According to a May 1990 declassified CIA report citing open-source intelligence material, the software for the Buran spacecraft was written in the Prolog programming language.

The only orbital launch of Buran occurred at 3:00 UTC on 15 November 1988 from Baikonur Cosmodrome Site 110/37. It was lifted into orbit, on an unmanned mission, by the specially designed Energia rocket. Unlike the NASA Shuttle, which was propelled by a combination of solid boosters and the Shuttle's own liquid-fuel engines fueled from a large fuel tank, the Energia-Buran system used thrust from the rocket's four RD-170 liquid oxygen/kerosene engines developed by Valentin Glushko and another four RD-0120 liquid oxygen/liquid hydrogen engines.

Even though the program was delayed by several years, Buran was the first space shuttle to perform an unmanned flight, including landing in fully automatic mode. The Buran automated launch sequence performed as specified, and the Energia rocket lifted the vehicle into a temporary orbit before the orbiter separated as programmed. After boosting itself to a higher orbit and completing two revolutions around the Earth, ODU (engine control system) engines fired automatically to begin the descent into the atmosphere. Exactly 206 minutes into the mission, the Buran orbiter landed, having lost only eight of its 38,000 thermal tiles over the course of the flight. The automated landing took place on a runway at Baikonur Cosmodrome where, despite a lateral wind speed of 61.2 kilometres per hour (38.0 mph), it landed only 3 metres (9.8 ft) laterally and 10 metres (33 ft) longitudinally from the target mark. Specifically, as Buran approached Baikonur Cosmodrome and started landing, spacecraft sensors detected the strong crosswind and "the robotic system sent the huge machine for another rectangular traffic pattern approach, successfully landing the spacecraft on a second try."

Recent News:
New Ptichka Orbiter Photos
Russian photographer and urban explorer Ralph Mirebs just published one of the saddest photoseries on space exploration. ...